calculo diferencial
cuarto parcial
primera clase (máximos y mínimos)
En esta primera clase del cuarto parcial vimos lo que son los máximos y mínimos, para poder llegar a los puntos críticos hay una serie de pasos que debemos de seguir, primero tenemos que encontrar la primera derivada ya que tenemos la derivada de la función, como segundo paso la tenemos que igualar a cero para posteriormente evaluar para poder encontrar los puntos críticos para poder verificar que nuestros puntos críticos estén bien podemos usar GeoGebra.
CONSULTADO
¿Para qué sirven los máximos y mínimos de una función?
Los máximos y mínimos de una función son extremadamente útiles en muchas situaciones del mundo real. Por ejemplo, si una empresa quiere maximizar sus ganancias, necesitará encontrar el punto máximo de una función que represente sus beneficios. Del mismo modo, si un ingeniero quiere minimizar el costo de producción, necesitará encontrar el punto mínimo de una función que represente los costos.
Además, en ciencias naturales, los máximos y mínimos nos ayudan a entender fenómenos como las fluctuaciones de temperatura, el comportamiento de los animales y muchos otros aspectos de la naturaleza. Identificar estos puntos críticos es esencial para hacer predicciones y tomar decisiones informadas.
¿Qué son los puntos críticos de una función?
Para encontrar los máximos y mínimos de una función, primero debemos identificar los puntos críticos. Un punto crítico de una función es un valor de la variable donde la derivada de la función es cero o no existe. En otras palabras, son los puntos donde la pendiente de la curva de la función se aplana o cambia de dirección.
Por ejemplo, si tenemos una función
, los puntos críticos se encuentran resolviendo la ecuación
. Estos puntos son candidatos a ser máximos, mínimos o puntos de inflexión (donde la curva cambia de concavidad).
Criterios para determinar máximos y mínimos de una función
Una vez que hemos identificado los puntos críticos, necesitamos determinar si cada uno de ellos es un máximo, un mínimo o un punto de inflexión. Para ello, utilizamos dos criterios principales: el criterio de la primera derivada y el criterio de la segunda derivada.
El criterio de la primera derivada nos dice que si la derivada de la función cambia de positiva a negativa en un punto crítico, entonces ese punto es un máximo. Si la derivada cambia de negativa a positiva, entonces ese punto es un mínimo.
El criterio de la segunda derivada implica que si la segunda derivada de la función es positiva en un punto crítico, entonces ese punto es un mínimo, porque la función es cóncava hacia arriba. Si la segunda derivada es negativa, entonces el punto es un máximo, porque la función es cóncava hacia abajo.
¿Cómo calcular los máximos y mínimos de una función?
Para calcular los máximos y mínimos de una función, seguimos un proceso en varios pasos. Primero, derivamos la función para encontrar su derivada. Luego, resolvemos la ecuación de la derivada igualada a cero para encontrar los puntos críticos.
Después, usamos el criterio de la primera o segunda derivada para determinar si cada punto crítico es un máximo, un mínimo o un punto de inflexión. Finalmente, evaluamos la función en estos puntos para encontrar los valores de los máximos y mínimos.
Cálculo de los máximos y mínimos relativos
f(x) = x3 − 3x + 2
1. Hallamos la derivada primera y calculamos sus raíces.
f'(x) = 3x2 − 3 = 0
x = −1 x = 1.
2. Realizamos la 2ª derivada, y calculamos el signo que toman en ella los ceros de derivada primera y si:
f''(x) > 0 Tenemos un mínimo.
f''(x) < 0 Tenemos un máximo.
f''(x) = 6x
f''(−1) = −6 Máximo
f'' (1) = 6 Mínimo
3. Calculamos la imagen (en la función) de los extremos relativos.
f(−1) = (−1)3 − 3(−1) + 2 = 4
f(1) = (1)3 − 3(1) + 2 = 0
Máximo(−1, 4) Mínimo(1, 0)
anexo video Máximos y mínimos de una función | Ejemplo 1 - YouTube
Comentarios
Publicar un comentario